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Abstract Patrol scheduling is a critical operational decision in protecting urban rail
networks against terrorist activities. Designing patrols to protect such systems poses many
challenges that have not been comprehensively addressed in the literature of patrol
scheduling so far. These challenges include strategic attackers, dynamically changing
station occupancy levels and human resource related limitations. In this paper, we develop
a game theoretic model for the problem of scheduling security teams to patrol an urban
mass transit rail network. Our main objective is to minimize the expected potential damage
caused by terrorist activities while observing scheduling constraints. We model this
problem as a non-cooperative simultaneous move game between a defender and an
attacker. We then develop column generation based algorithms to find a Nash equilibrium
for this game.We also present a lower bound for the value of the gamewhich can be used to
terminate the column generation algorithm when a desired solution quality is reached. We
then run computational experiments to investigate the efficiency of the proposed algorithms
and to gain insight about the value of the patrolling game. Our results show the efficiency of
the proposed algorithms. Finally, we present results for the case of a real urban rail network.
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Introduction

Protecting critical infrastructures against terrorism is one of the top priorities in homeland
security (Moteff 2005). Among these critical infrastructures, transportation systems,
which serve 32 million passengers every day in the United States, are critical for
supporting the national security and economic well-being. For decades, public transit
systems around the world have been considered as a principal target for terrorist acts
(Strandberg 2013; Shvetsov and Shvetsova 2017; Shvetsov et al. 2017). Among these
systems, airliners are considered to be hard targets due to implementation of security
checkpoints and increased security measures. Over the years, the number of attempted
hijackings and bombings has declined gradually (although the public areas of airports still
remain vulnerable). Unlike airlines, where security checkpoints screen passengers and
luggage, mass transit options like subways, passenger trains, and buses, are designed to be
easily accessible and are therefore harder to protect. Ground transportation systems, which
often include enclosed spaces packed with people, could prove attractive targets for
terrorists. Therefore, such open transit systems are considered to be soft targets for the
terrorists. The attacks in Brussels and Istanbul along with many other incidents indicate
that terrorists tend to target such large crowds to cause mass human casualties in addition
to panic and chaos. These incidents along with many others highlight the importance of
protecting such infrastructures. The threat to these infrastructures could be substantially
reduced by analyzing the risk associated with attack to each infrastructure component,
mitigation planning and designing efficient response policies. This includes assigning
security teams and designing efficient patrol schedules to protect vulnerable areas. Patrol
scheduling involves the process of constructing optimized work timetables for security
staff in order to minimize the potential damage of possible attacks. Designing patrols to
protect public transport systems and other soft targets poses unique challenges that have
not been properly addressed in the literature of patrol scheduling so far. One of these
challenges is the dynamic nature of crowd size inside these systems. Because the
adversary’s primary objective is to inflict human casualties, the attacker’s payoff value
for each station depends on the number of people residing in the station. These numbers
may change over time. Another challenge is to develop schedules that observe the
constraints regarding human resources, for example, the generated schedules may be
required to include breaks for the security teams and these breaks should not be consec-
utive. Moreover, efficient methods are needed to design patrols for a general network. In
this paper, we address these challenges in a patrolling game setting.

Patrol scheduling has many applications in real life. Police officers patrol cities; security
officers patrol terminals at airports and transportation centers; security guards patrol
museums and shopping malls. The first studies on the patrolling problems were conducted
in 1970s, when several studies focused on allocating patrols to different areas to optimize
performance measures such as patrol delays, average waiting time and total response time
(Larson 1972; Olson and Wright 1975; Chaiken and Dormont 1978; Chelst 1978). These
studies assume that crime frequency in different regions remain fixed and known to the
patroller. However, since the adversaries can be strategic in their attacks, they may change
the location and timing of their attacks in response to the patroller’s strategy. Therefore,
game theoretic analysis of such attacks yields more realistic results. To this end, several
researchers developed game theoretic models for the patrolling problem. One of the first
models applying game theory in patrol scheduling, named ARMOR (Paruchuri et al. 2005,
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2006, 2007, 2008; Pita et al. 2008), casts the patrolling/monitoring problem as a Bayesian
Stackelberg game in order to aid the security agent decidewhere to allocate inspection gates
in an airport. ARMORwas successfully deployed at the Los Angeles International Airport
(LAX) to randomize checkpoints on the roadways entering the airport. Another stream of
research focuses on protecting the urban rail systems against fare evasion (Jiang et al. 2012,
2013; Yin et al. 2012; Delle Fave et al. 2014, 2015). For example, Jiang et al. (2012)
developed a Stackelberg game to generate patrolling strategies to inspect passenger tickets
in an urban rail transportation system. They use this model to randomly deploy security
personnel for fare inspection in the Los Angeles Metro Rail System. The obtained strategy
seems to yield high levels of revenue by deterring fare evasion. Another model, named
IRIS (Intelligent Randomization In Scheduling) is developed by Tsai et al. (2009) to assist
Federal Air Marshal Service (FAMS) with randomly scheduling air marshals on flights.
FAMS deployed IRIS in limited use since October 2009. There have been some studies on
designing patrol strategies for transit systems. Varakantham et al. (2013) study the problem
of designing randomized patrols to enhance security of mass rapid transit systems. They
formulate this problem as a Stackelberg security game to optimize the patrols in terms of
travelled distance. They then apply their model on a real life case of rail network in
Singapore. To solve this problem, they apply a two-stage solution algorithm; in the first
stage, they obtain coverage probabilities using a Stackelberg security game. Then in the
second stage, they use these coverage probabilities to derive an actual patrol. They assume
that every station is accessible from every other station; therefore, it is possible to generate
feasible patrols for every coverage vector. However, the accessibility assumption may not
always be valid; the distance between stations, especially the ones on different lines, can be
significantly high. Therefore, some of the coverage vectors may lead to patrols that cannot
be conductedwithin the given time horizon. Delle Fave et al. (2014) develop anothermodel
for patrolling transit systems. They propose a Multi-Operation Patrol Scheduling System
(MOPSS), a new system to generate patrols for transit system to tackle multiple types of
illegal activities including fare evasion, terrorism and crime. However, they do not consider
human resource considerations such as break times etc. Moreover, the counter terrorism
module in their model assumes that the targets have fixed values. Thismay not be a realistic
assumption due to the dynamic nature of crowd sizes inside transportation systems.

The most relevant paper to our study is conducted by Lau et al. (2016). They study
the problem of generating patrolling schedules for security teams to patrol a mass rapid
transit rail network of an urban area. Their objective is to deploy patrolling units to the
stations in different time units so that some scheduling and security related constraints
are satisfied. They develop various mathematical models and apply it to a real rail
network. The shortcoming of their model is that, because it is not a game based model,
it is not designed to generate randomized schedules. To remedy this, they propose to
generate randomized solutions by varying some of the problem parameters such as the
start time and break time for each team. However, this may lead to sub-optimal patrol
schedules. Moreover, the adversary’s attack probabilities are assumed to be fixed and
known. Again, this is not a realistic assumption because terrorists can change the
location and timing of their attacks in response to the patrol strategy. Game theoretic
models are designed to generate randomized strategies and are more suited for such
adversarial settings.

In this paper, we develop a game theoretic model to schedule security teams in order
to protect an urban rail network against terrorist attacks. We develop column generation
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based algorithms to efficiently solve the game under general network structures. The
computational results show the efficiency of the proposed algorithms. The rest of this
paper is organized as follows. In Section BProblem description^, the problem under
consideration is described. The proposed column generation approach is explained in
Section BColumn generation procedure^. In Section BA heuristic solution approach for
the pricing sub-problem^, a heuristic algorithm is presented to efficiently solve the
pricing sub-problem. Section BNumerical experiments^ presents the numerical results
along with an application of the model on a real case. Finally, the main conclusion of
the paper and suggestions for future research are discussed in Section BConclusions and
future research^.

Problem description

The patrolling problem considered in this paper involves scheduling a set of security
teams I to protect a set of stations J on an urban rail network over a time horizon of T
time periods. The time periods can represent the working hours in a day. Figure 1
shows an example of such an urban rail network in Philadelphia.

Fig. 1 Urban rail network in Philadelphia
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Most of these networks consists of multiple lines that are connected via interchange
stations. We model the patrolling problem as a simultaneous game between a defender
and a single adversary. The defender controls the security teams and chooses a schedule
to minimize the damage from the adversary’s attack, while the adversary chooses the
station and the time to attack. A pure strategy for the adversary is represented by a pair
(j, t) which indicates the station j and time t to attack. A pure strategy for the defender is a
schedule that determines the complete course of actions for all teams throughout the time
horizon. These actions include patrolling different stations or taking a break. Each team
should have a pre-specified number of breaks and these breaks should not be consecutive
or scheduled at the beginning or end of the time horizon. The payoffs to the players are
determined by the expected damage to the network. While the defender wants to
minimize the expected damage, the adversary wants to maximize it. We denote the value
of station j at time t by cjt, this value can represent the number of affected people if a
successful attack is launched. If the adversary decides to attack station j at time t and the
station is not being patrolled by a security team, the adversary wins a payoff of cjt. On the
other hand, if the station is being patrolled by a security team at the time of attack, with
some probability dj the attack will be thwarted and with probability 1 − dj the attack will
be successful. Therefore, the expected damage is (1 − dj)cjt. We represent the set of all
possible schedules by S and index them by s with s = 1, 2, ⋯, |S|.

The players play a zero-sum matrix game where the defender plays as the row
player; with the set of all possible schedules constituting the rows of the matrix. The
adversary is the column player, with the set of all possible attack pairs (j, t) constituting
the columns of the game matrix. The game can be solved by generating all of the
possible strategies for both players. However, for the games of large size, the set of all
possible strategies is exponentially large for the defender and generating all of them
becomes impractical. In the next section, we develop an efficient column generation
approach to obtain the Nash equilibrium for this game.

Column generation procedure

In this section, we develop a column generation algorithm to obtain the Nash equilib-
rium point for the patrolling game described in Section BProblem description^. We can
write the linear program (LP) to obtain the Nash equilibrium of this game as:

Minimize u ð1Þ

subject to u≥ ∑
s∈S

c jt 1−wS
jtd j

� �
xs; ∀ j; t; ð2Þ

∑
s∈S

xs ¼ 1; ð3Þ

xs≥0; ∀s∈S: ð4Þ
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In this formulation xs is the probability of using schedule s ∈ S in the defender’s
mixed strategy. ws

jt is a binary parameter that is equal to 1 if schedule s interrupts an
attack strategy (j, t), zero otherwise. In the terminology of column generation, this LP is
called the linear programming master problem (LPM). Note that each column in the
LPM corresponds to a schedule. In general the set S, may be exponentially large;
however, the number of non-zero variables (the basic variables) in the LPM is equal to
the number of constraints i.e. the total number of (j, t) pairs: T|J|. Therefore, even
though the number of possible schedules S is large, only a small number of them is
used in the Nash equilibrium. The column generation algorithm uses this idea to start
with a subset S' ⊆ S of columns and generate columns as needed. The starting subset S'

could be any set of feasible schedules. Using the restricted set of schedules, S', we
obtain the following LP:

Minimize u ð5Þ

subject to u≥ ∑
s∈S′

c jt 1−wS
jtd j

� �
xs; ∀ j; t; ð6Þ

∑
s∈S0

xs ¼ 1; ð7Þ

xs ≥ 0; ∀s ∈ S
0
: ð8Þ

This problem is called Restricted LPM (RLPM). Dual of the RLPM is:

Maximize v ð9Þ

subject to v≥ ∑
j;t
c jt 1−wS

jtd j

� �
qjt; ∀s ∈ S

′; ð10Þ

∑
j;t
qjt ¼ 1; ð11Þ

qjt ≥0; ∀ j; t: ð12Þ
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Where qjt is the dual variable associated with constraint (j, t) in the RLPM. Next step
is to find a column (schedule) in S\S' that could improve the current optimal solution of
the RLPM. Given the optimal dual solution qjt of the RLPM, the reduced cost of

column s ∈ S\S' is ∑ j;tcjt 1−ws
jtd j

� �
qjt−v. Based on the concept of duality in linear

programming, optimality of the RLPM is equivalent to feasibility of the dual.

Therefore, patrols that violate the constraint v≤∑ j;tcjt 1−ws
jtd j

� �
qjt can improve the

current optimal solution. Therefore, we should look for a column (schedule) s such that:

∑ j;tcjt 1−ws
jtd j

� �
qjt−v < 0. Note that qjt are fixed, and the problem is to find a schedule

s with ws
jt such that: ∑ j;tcjt 1−ws

jtd j

� �
qjt−v < 0. This problem is called the pricing sub-

problem. The pricing sub-problem involves finding a column, i.e. a schedule, with a
negative reduced cost. Subsection BMathematical formulation to solve the pricing sub-
problem^ develops a mathematical program to solve the pricing sub-problem. Subsec-
tion BOverall column generation procedure and a dual bound^ presents the overall
column generation algorithm and a lower bound on the value of the game.

Mathematical formulation to solve the pricing sub-problem

In this section, we develop a mathematical formulation to solve the pricing sub-problem.
Here is a list of parameters and variables used to formulate the pricing sub-problem:

a
j j
0 Binary parameter, is equal to 1 if it is feasible to visit stations j and j'

consecutively; 0 otherwise.
M A big enough number.
xijt Binary variable, 1 if team i patrols station j at time t; zero otherwise.
yijt Binary variable, 1 if team i takes a break at station j at time t; zero otherwise.
wjt Binary variable, 1 if a team patrols station j at time t, zero otherwise.

Using this notation, the pricing sub-problem is formulated as follows:

Minimize∑
j
∑
t
cjtwjtqjtd j ð13Þ

subject to ∑
j

xi jt þ yi jt
� �

¼ 1; ∀i; t; ð14Þ

xi jt þ yi jt þ x
i j
0
;tþ1

þ y
i j
0
;tþ1

≤ a
j j
0 þ 1; ∀i; j; j

0
; t; ð15Þ

∑
i
xijt ≤M wjt;∀ j; t; ð16Þ

wjt ≤ ∑
i
xijt;∀ j; t; ð17Þ
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∑
j;t
yijt ¼ 2;∀i; ð18Þ

∑
j
yijt þ ∑

j
yij;tþ1≤1;∀i; t; ð19Þ

∑
j
yijt ¼ 0;∀i∈I ; t∈ i; Tf g; ð20Þ

xijt; yijt;wjt∈ 0; 1f g: ð21Þ

In this formulation, Eq. (13) is the objective function, which is minimizing the

reduced cost. Note that the reduced cost is equal to ∑ j;tcjt 1−ws
jtd j

� �
qjt−v which, after

removing the fixed terms, is equivalent to maximizing ∑j ∈ J∑t ∈ Tcjtwjtqjtdj. Equation
(14) ensures that each team at each time can be assigned to exactly one job. This job
can be patrolling a station or taking a break. Equation (15) ensures for each team that
the pairs of jobs undertaken consecutively are feasible, for example, the team cannot
consecutively patrol two stations that are far apart from each other, or they cannot take
two consecutive breaks. Equation (16) ensures that if any team is patrolling station j at
time t then wjt is equal to 1. Equation (17) ensures that if no team is patrolling station j
at time t then wjt is equal to 0. Constraint (18) ensures that the number of breaks for
each team is exactly equal to 2. Constraint (19) ensures that consecutive breaks do not
happen. Constraint (20) ensures that the breaks are not scheduled at the beginning or
the end of time horizon. Constraint (21) is the integrality constraint for variables wjt, yijt
and xijt.

Overall column generation procedure and a dual bound

Figure 2 presents the pseudo-code for the overall column generation algorithm. As seen
in this figure, the column generation algorithm starts with a randomly generated set of
initial columns (schedules). The RLPM is solved using this set of initial columns and
the vector of dual values is obtained. Dual values are then used in the pricing sub-
problem to generate a new column (schedule). If a new column with a negative reduced
cost is obtained, it is added to the RLPM and the process is repeated; otherwise, the
procedure terminates.

During column generation, we have access to a dual bound on value of the game so
that we can terminate the algorithm when a desired solution quality is reached. The
following lemma offers a lower bound on the value of the game, which can be
computed in each iteration of the column generation algorithm.

Lemma 1 (Dual bound) Let v(RLPM) and v(LPM) denote the optimum objective
function value of the current RLPM and LPM, respectively. Also, let v(PP) be the
minimum reduced cost obtained by solving the pricing sub-problem to optimality. We
have: v(LPM) ≥ v(RLPM) + v(PP).
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Proof General form of this result can be found in Lübbecke (2011). Because we know
that ∑

s∈S
0 xs ¼ 1 for an optimal solution of the MP, one cannot improve v(RLPM) by

more than 1 times the smallest reduced cost v(PP), hence v(LPM) ≤ v(RLPM) + v(PP).
■

Remark 1 Note that in order for the bound in lemma 1 to be valid; the pricing sub-
problem should be solved to optimality. In general, the dual bound is not monotone
over the iterations, this is called the yo-yo effect.

A heuristic solution approach for the pricing sub-problem

In this section, we develop a dynamic programming based greedy algorithm to obtain an
approximate solution to the pricing sub-problem. This heuristic algorithm can be used
inside the column generation procedure to obtain an approximate solution for the patrol-
ling game. To solve the pricing sub-problem, we use a greedy algorithm to generate
schedules. We define a patrol as a detailed course of action for one team that determines
what to do at each time period t. Note that a patrol is different from a schedule. While a
schedule determines the complete course of action for all teams, a patrol does so for only
one team. The definitions match if we have only one security team. For each security team
the greedy algorithm assigns a patrol that maximizes ∑ j∈ J∑t∈Tcjtqjtd ja

p
jt 1−wjt
� �

, where
wjt is a binary variable equal to 1 if station j at time t is already covered. To find such a
patrol, we use a dynamic programming algorithm. The details of the dynamic program-
ming approach are presented in Subsection BDynamic programming procedure^. In
Subsection BOverall heuristic procedure^, the overall greedy algorithm is presented and
some results on the quality of the proposed algorithm are presented.

Dynamic programming procedure

In this section, we develop a dynamic programming (DP) procedure to solve the pricing
sub-problem to find an optimal patrol. The aim is to find a patrol p with apjt such that

∑ j∈ J∑t∈T cjtqjtd ja
p
jt 1−wjt
� �

is maximized.

Fig. 2 Pseudo-code for the overall column generation algorithm
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DP is a method for solving complex problems by breaking them down into smaller
problems (Larson and Casti 1978). In order to solve a problem using DP, the problem
must be divided into smaller problems called stages. The stages are often solved
backward, which is the case in the proposed DP procedure. Each stage has a number
of states that are generally the information needed to solve the stage. The decision at a
stage updates the state for the current stage to the state for the next stage. Given the
current state, the optimal decision for the remaining stages is independent of the
decisions made in the previous stages. This is the fundamental principle of optimality
in DP. It means that the problem can be broken down into smaller problems, which can
be solved independently. Finally, a recursive relationship between the values of deci-
sion at the current stage and the optimum decisions at previous stages must be
identified. In other words, the optimum decision uses the previously found optimum
decision values. Elements of the proposed dynamic programming procedure are as
follows:

– t = 1, 2, …, T: Stage variable, each time period is considered a stage.
– x(t) = [b(t), l(t)]: State variable at stage t, consists of two components: number of

breaks until time period t: b(t) and location at time t : l(t).
– u(x, t): Decision in state x and stage t, take a break at an adjacent station j or patrol

an adjacent station j.
– r(x, t, u): Instant reward in state x at stage t if action u is taken. If the action is to

patrol an adjacent station j, then the obtained instant reward is r(x, t, u) = cjtqjtdj(1 −
wjt). If the action is to take a break at an adjacent station j, then the reward is r(x, t,
u) = 0.

– R(x, t): Optimum accumulated reward with state x at stage t.
– u∗(x, t): Optimum action with state x at stage t.
– F(x, u): Transition function, if action u is taken in state x, the state in the next stage

will be F(x, u). If the action is to patrol an adjacent station j, then the next state is
x(t + 1) = [b(t + 1), l(t + 1)] = [b(t), j]. If the action is to take a break at an adjacent
station j, then the next state is x(t + 1) = [b(t + 1), l(t + 1)] = [b(t) + 1, j].

Now using these parameters, a recursive equation can be written for the optimum
accumulated reward functions:

R x; tð Þ ¼ max
u xð Þ

r x; t; uð Þ þ R F x; uð Þ; t þ 1ð Þf g: ð22Þ

This equation describes an iterative relation for determining R(x, t), for all feasible x
and t from the knowledge of R(x, t + 1) for all feasible x and t + 1. R (x, T) can be easily
solved by using R x; Tð Þ ¼ max

u xð Þ
r x; T ; uð Þf g then R(x, T − 1) can be determined using

Eq. (22). Continuing this backward procedure R(x, 1) is determined.

Overall heuristic procedure

Figure 3 presents the pseudo code for the overall greedy approach. As seen in this
pseudo code, the algorithm starts with initializing wjt to indicate that no patrols have
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been assigned to any security team. Then the DP is used to obtain a patrol with
maximum ∑ j∈ J∑t∈T cjtqjtd ja

p
jt 1−wjt
� �

. Next, we assign the obtained patrol to the
security team and update wjt so that is reflects the covered (j, t) pairs. This process is
repeated for all available security teams.

The following lemma shows that the greedy algorithm achieves an approximation

ratio of 1− 1− 1
Ij j

� �
Ij j.

Lemma 2 For fixed values of qjt Suppose w*
jt and w

G
jt are the optimal and greedy values

o f w j t . T h e n w e h a v e : ∑ j∈ J∑t∈Tcjtqjtd jwG
jt ≥ 1− 1− 1

Ij j
� ��

Ij jÞ∑ j∈ J∑t∈Tcjtqjtd jw*
jt > 1− 1

Ij j
� �

∑ j∈ J∑t∈Tcjtqjtd jw*
jt.

Proof The pricing sub-problem is in fact a weighted maximum coverage problem with
cjtqjtdj acting as weights and |I| as the maximum number of sets to be selected. The result
comes from the fact that for the weighted maximum coverage problem, the greedy

algorithm achieves an approximation ratio of 1− 1− 1
Ij j

� �jI j
(Nemhauser et al. 1978). ■

The next lemma shows the impact of using the greedy algorithm in the column
generation procedure instead of solving the sub-problem to optimality.

Lemma 3 Let v(RLPM) and v(LPM) denote the optimum objective function value of
the current RLPM and LPM respectively. Also, let v(PPG) be the reduced cost obtained
by solving the pricing sub-problem using the greedy algorithm. We have:

v LPMð Þ≥v RLPMð Þ þ v PPG
� �

1− 1− 1
Ij j

� � Ij j > v RLPMð Þ þ v PPG
� �

1−
1

e

: ð23Þ

Proof Let v(PP) be the optimal solution of pricing sub-problem. From Lemma 2 we

have V PPG
� �

≤ 1− 1− 1
Ij j

� ��
Ij jÞ v PPð Þ < 1− 1

Ij j
� �

v PPð Þ. Thus:

v PPð Þ≥ V PPG
� �

1− 1− 1
Ij j

� � Ij j >
V PPG
� �

1−
1

e

: ð24Þ

Fig. 3 Pseudo-code for the greedy algorithm
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Moreover, from Lemma 1 we have:

v LPMð Þ≥v RLPMð Þ þ v PPð Þ: ð25Þ

The result follows from inequalities (24) and (25). ■

Remark 2 Note that when |I| = 1, when there is only one security team, the bound in
Lemma 2 is tight and the greedy algorithm obtains the optimal solution.

Remark 3 Even-though we cannot prove a tighter bound for the greedy algorithm, the
numerical experiments show that the solutions obtained using the greedy algorithm
match the optimal solution in every instance.

Numerical experiments

In this section, we perform computational experiments to investigate efficiency of the
proposed algorithms and gain insight on some properties of the game. The algorithms
are coded in C++ and CPLEX 12.6 solver has been used to solve the LPs and the
pricing sub-problems. The computational experiments are performed on a computer
with 2.4 GH processor and 4 GB of RAM. For all experiments in this section, we
assume that the number of security teams is given as a parameter, represented by ∣I∣.
We also assume that these security teams are identical and they cannot be divided into
smaller teams. Meaning that each team must be in exactly one station at each time.
Moreover, each security team is required to have exactly two breaks in the time horizon.

In our first experiment, we compare the performances of the proposed exact column
generation approach (ECG) with the greedy column generation (GCG). Our base set of
test instances consists of randomly generated instances with the underlying general graphs.

To generate general graphs, the expected edge density (measured as Ej j
Jj j Jj j−1ð Þ, where E is

the set of edges in the graph. We do not consider self-loop edges in calculating edge
density) of 60% is used for the graph, and the number of stations, |J|, ranges from 20 to 40.
In generating the general graphs, we first started with a random tree and added random
edges until the edge density reaches 60%. We generated five instances for each problem
size, with different values of T ∈ {10, 11,…, 15} and |I| ∈ {1, 2,…, 5}.

Our results show that the GCG always finds the same expected damage value as the
ECG. One possible explanation for this phenomenon is that our model only indirectly
considers the lost time to travel from one station to another. We then compare the
algorithms in terms of their run times. Tables 1 and 2 show the obtained run times in
seconds. In these tables for each instance, the smaller run time is highlighted in bold.
As seen in these tables GCG performs better than ECG for all instances of the problem.
Moreover, for both algorithms, the run time generally increases as the number of
stations, i.e. |J|, and the number of time periods, i.e. |T|, increases.

Figure 4 shows the effect of increasing the number of security teams on the expected
damage for different number of stations. As seen in this figure, the expected damage
decreases as the number of security teams increases. However, the amount of decrease
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in expected damage also decreases as the number of security teams increases. This
diminishing returns effect is visible for all values of |J|.

Figure 5 shows convergence of the lower and upper bounds of GCG over iterations
for an instance of the problem with |I| = 1, T = 10 and different values of |J|. In each
iteration the lower bound is computed using Lemma 3 and the upper bound is taken as
the current objective function value. As seen in this figure, the lower bound is not
monotone over the iterations and the yo-yo effect is visible. Moreover, for most cases,
the upper bound value stabilizes way before the algorithm terminates. This means that
after the upper bound values stabilize, we can terminate the column generation
algorithm without undermining the solution quality drastically.

Next, we analyze the effect of detection probabilities on the expected damage, here
we assume that the detection probabilities are equal to each other. Figure 6 shows the
effect of detection probability on the expected damage for different values of number of
security teams |I|. As seen in this figure, the expected damage is smaller when there are
more security teams. Moreover, as the detection probability increases, the expected
damage, generally, decreases and this decrease, roughly speaking, behaves linearly for
higher values of detection probability.

Next, we consider a real case of an urban rail network with 51 stations. Figure 7
shows the network graph of this case. As seen in this figure, there are two main lines
that connect different parts of the city together. There is one free interchange between
stations 41 and 16. Occupancy levels in each station are collected based on ridership
totals, which are in turn based on turnstile entry and exclude free interchange ridership.
A 12-h planning time horizon, starting from 5:00 AM and ending at 5:00 PM, is
considered for this problem (i.e. T = 12 is considered). Based on this information, we
run the GCG algorithm to obtain the best patrolling strategy for |I| ∈ {1, 2,…, 10}.

Table 1 Comparison of exact column generation and greedy column generation run times (seconds)

|J| T = 10 T = 11 T = 12

ECG GCG ECG GCG ECG GCG

20 195.01 64.18 228.04 62.37 323.93 119.62

25 354.48 115.77 471.22 153.19 519.32 208.09

30 477.88 146.73 554.75 229.61 776.09 236.04

35 891.87 276.07 1015.9 422.39 1287.66 503.86

40 1147.89 336.41 1855.11 719.51 2830.80 663.60

Table 2 Comparison of exact column generation and greedy column generation run times (seconds)

|J| T = 13 T = 14 T = 15

ECG GCG ECG GCG ECG GCG

20 382.34 146.01 385.26 199.01 472.00 201.62

25 707.37 383.70 725.17 272.52 987.22 430.63

30 1272.09 619.50 1595.14 829.14 1945.62 1187.35

35 1384.21 578.76 2044.15 932.16 2554.24 1352.95

40 2746.47 1297.65 2897.79 1432.55 3736.70 2273.71
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We first study the effect of the defender’s deviation from the Nash equilibrium on
the expected damage. Specifically, we consider the case that the defender, in deriving
her strategy, mistakenly thinks that the attack probabilities are the same and are
uniformly distributed over stations. She then uses a probabilistic approach (PA) to
obtain a single schedule. We compare the expected damage in this case with the
expected damage in the Nash Equilibrium (NE). Figure 8 shows the results of this
comparison. As seen in this figure, Nash strategy results in smaller expected damage
values for all instances. Moreover, as the number of teams increases, the expected
damage decreases for both NE and PA. The diminishing returns phenomenon is visible
for NE, however this effect does not exist for PA.

We now study the distribution of the expected number of visits in important stations.
Figure 9 shows the expected number of visits over a 30-day period for the 5 most

Fig. 4 The effect of number of security teams on expected damage

Fig. 5 Convergence of GCG over iterations
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visited stations based on time of the day, for the case of 10 security teams. As seen in this
figure, majority of the stations have two peak visit times: one starts around 7:00 AM and
end around 9:00 AM, the other one starts around 2:00 PM and end around 4:00 PM.
Some stations also have peak visit times at the start and end of times horizon.

Next, we study the distribution of the expected damage among stations based on
time of the day. Figure 10 shows the distribution of expected damage for 10 stations

Fig. 6 The effect of detection probability on expected damage

Fig. 7 Case network
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with the highest expected damage values, for the case of 10 security teams. As seen in
this figure, for the majority of the stations there are two peak times for the expected
damage: one starts around 7:00 AM and end around 10:00 AM, the other one starts
around 1:00 PM and end around 3:00 PM.

Conclusions and future research

In this paper, we propose a game theoretic approach for patrolling urban rail networks.
The proposed model generates inherently randomized schedules that observe rostering
related constraints. Our proposed model is a non-cooperative simultaneous move game

Fig. 8 Comparison of probabilistic approach (PA) and the Nash equilibrium (NE)
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Fig. 9 Expected number of visits for five most visited stations
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between a defender and an attacker. We developed efficient algorithms to find the Nash
equilibrium for this game. We also presented lower bounds on the expected potential
damage, which can be used to terminate the column generation algorithm when a
desired solution quality is reached. We then run computational experiments to inves-
tigate the efficiency of the proposed algorithms and to gain insight about the value of
the patrolling game. Our results show the efficiency of the proposed algorithms.
Finally, we present results for the case of a real urban rail network.

Our study closes a gap in the literature by extending the existing models so that
schedule randomization is done in a strategic way with consideration of possible
adversary strategies. However, there is still a need to further study more efficient
solution methods to find the Nash equilibrium. Moreover, studying the effect of
transparency vs secrecy is an interesting topic for future research in this area. Current
model assumes complete secrecy of generated schedule. However, the adversary may
perform surveillance to find out the current locations of the patrollers. Transparency
could be modelled via a Stackelberg game.

Another way to extend the current research is integrating the current model with
long term strategic decisions to obtain a comprehensive model. The current model only
studies the operational decision of scheduling the security teams; it assumes that the
strategic decisions are fixed and given. For example, the number of available security
teams is an input parameter, moreover the detection probabilities are assumed to be
fixed and given. However, the number of security teams can be considered as a
decision variable, the detection probabilities can be changed by investing on new
technologies. Usually the operational and strategic decisions are studied separately,
however these decisions affect each other and integrating them to obtain a comprehen-
sive model may lead to significant reductions in the expected potential damage.

Acknowledgments This material is based upon work supported by the National Science Foundation under
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